Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid.

نویسندگان

  • Christopher M Reilly
  • Nilamadhab Mishra
  • Julie M Miller
  • Dimple Joshi
  • Phillip Ruiz
  • Victoria M Richon
  • Paul A Marks
  • Gary S Gilkeson
چکیده

Epigenetic regulation of gene expression is involved in the development of many diseases. Histone acetylation is a posttranslational modification of the nucleosomal histone tails that is regulated by the balance of histone deacetylases and histone acetyltransferases. Alterations in the balance of histone acetylation have been shown to cause aberrant expression of genes that are a hallmark of many diseases, including systemic lupus erythematosus. In this study, we determined whether suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor: 1) inhibits inflammatory mediator production in vitro and 2) modulates lupus progression in vivo. Mesangial cells isolated from 10-wk-old MRL/lpr mice were stimulated with LPS/IFN-gamma and incubated with SAHA. TNF-alpha, IL-6, NO, and inducible NO synthase expression were inhibited by SAHA. We then treated MRL/lpr mice with daily injections of SAHA from age 10 to 20 wk. The animals treated with SAHA had decreased spleen size and a concomitant decrease in CD4-CD8- (double-negative) T cells compared with controls. Serum autoantibody levels and glomerular IgG and C3 deposition in SAHA-treated mice were similar to controls. In contrast, proteinuria and pathologic renal disease were significantly inhibited in the mice receiving SAHA. These data indicate that SAHA blocks mesangial cell inflammatory mediator production in vitro and disease progression in vivo in MRL/lpr mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse.

Studies in human systemic lupus erythematosus (SLE) suggest a possible role for histone deacetylases (HDACs) in skewed gene expression and disease pathogenesis. We used the MRL-lpr/lpr murine model of lupus to demonstrate that HDACs play a key role in the heightened levels of both Th1 and Th2 cytokine expression that contribute to disease. The availability of specific HDAC inhibitors (HDIs) suc...

متن کامل

Decreased expression of the Ets family transcription factor Fli-1 markedly prolongs survival and significantly reduces renal disease in MRL/lpr mice.

Increased Fli-1 mRNA is present in PBLs from systemic lupus erythematosus patients, and transgenic overexpression of Fli-1 in normal mice leads to a lupus-like disease. We report in this study that MRL/lpr mice, an animal model of systemic lupus erythematosus, have increased splenic expression of Fli-1 protein compared with BALB/c mice. Using mice with targeted gene disruption, we examined the ...

متن کامل

Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B.

In systemic lupus erythematosus, the renal deposition of complement-containing immune complexes initiates an inflammatory cascade resulting in glomerulonephritis. Activation of the classical complement pathway with deposition of C3 is pathogenic in lupus nephritis. Although the alternative complement pathway is activated in lupus nephritis, its role in disease pathogenesis is unknown. To determ...

متن کامل

Clinical and Serologic Manifestations of Autoimmune Disease in MRL-lpr/lpr Mice Lacking Nitric Oxide Synthase Type 2

Nitric oxide (NO) is an important mediator of the inflammatory response. MRL-lpr/lpr mice overexpress inducible nitric oxide synthase (NOS2) and overproduce NO in parallel with the development of an autoimmune syndrome with a variety of inflammatory manifestations. In previous studies, we showed that inhibiting NO production with the nonselective nitric oxide synthase (NOS) inhibitor NG-monomet...

متن کامل

Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice.

Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disease of unknown etiology. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is operative in innate and adaptive immunity and important in immune-mediated diseases such as rheumatoid arthritis and atherosclerosis. The functional relevance of MIF in systemic autoimmune diseases such as SLE is unkn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 173 6  شماره 

صفحات  -

تاریخ انتشار 2004